Axial Flow Valve High pressure regulator Series 300/600 Nominal diameter DN 50 to DN 300 ## **Applications** - Industrial - Distribution - Transmission #### **Brief information** The unique design incorporates many features vital to an optimum of satisfactory operation and at the same time simple to maintain and more compact than any other equivalent regulator. The "V"-port radial slots in the valve cage provides an equal percentage valve characteristic and a wide and stable control range. A further consequence of this design is that the noise level is considerably reduced compared to conventional units. The preloaded rubber sleeve is the only moving part, expanding around the complete circumference of two tapered stainless steel valve cage sections which are provided with radial slots. The sleeve has the function of the conventional "seat" type regulator. Lifting of the sleeve regulates the gas flow. The Axial Flow Valve can be installed in any position and can be easily bolted between two flanges. The short construction length can result in a smaller pressure reduction station without loss of control accuracy. The Axial Flow Valve can easily be removed from the gas line and comprises only a few components. The entire regulator can be disassembled by removing one bolt. No special tools or techniques are required. All units are suitable for operation on natural, liquid petroleum and manufactured gases. The units are approved by DVGW according to the pressure equipment directive 97/23/EC (PED) and accordance with EN 334. Pressure ranges, accuracy classes P_d [bar] 3 - 10 8 - 16 14 - 42 1 - 3 14 - 42 0 - 1 0 - 1 AC 10 5 5 5 20 10 10 2.5 10 2.5 10 SG 10 10 20 10 30 30 20 P_u [bar] 20-100 14 - 50 1.5 - 16 **ANSI** 600 **ANSI** 300 PΝ 16 Registration Number: CE-0085BN0509 #### **Technical Data** Inlet pressure range: 1.5 bar to 100 barOutlet pressure range: 10 mbar to 41 bar | Body ratings and sizes | | | | | | | | |------------------------|----------------------------|-----------------|--|--|--|--|--| | Series | Sizes [DN] | Pressure rating | | | | | | | 300 | 50, 80, 100, 150, 200, 300 | 50 bar | | | | | | | 600 | 50, 100, 150, 200 | 100 bar | | | | | | #### Ordering example - Gas pressure regulator AFV - Valve size DN - Pressure class ANSI or PN - Sleeve type and grade, (e. g. HB7) - Control block inspirator or restrictor - Pilot system, pilot and optional load limit regulator (e. g. Z / ZSC100) - Inlet pressure ... to ... bar - Outlet pressure \dots bar or pressure range from \dots to \dots bar - Recommended flow rate #### Main features - Simple unique design - Compact size and light weight - Streamline path for quiet operation - Sized from DN 50 through DN300 - Pilot operated - Temperature range -20 °C to +60 °C - · Low noise - Minimal spares - Easy to install - Easy to maintain #### **Options** - Pressure reduction - Relief valve - Pressure reduction/ monitor combination - Two stage pressure reduction with monitor override - · Flow control ### System components - Valve consisting of: Body assembly Cage closure Sleeve - 2a Control block Composite, with integral restrictor and filter assembly. - 2b Control block Inspirator, with integral restrictor and filter assembly. Special nozzle reduces the differential pressure necessary to fully open the Axial Flow Valve. - 3a Load limit regulator Series Z used for maintaining the inlet pressure for a control pilot Inlet pressures up to 100bar. Outlet pressures up to 41 bar. - 3b Pilot regulator Series ZSC used for secondary pressure control Inlet pressures up to 100bar. Outlet pressures up to 41 bar. ## Valve dimensions, weights and bolts | Series 300 | | | | | | | | | | | |------------|-----------|-----|--------|-------|---|------------------------------------|----|--|----|--| | DN | Size [mm] | | Weight | PN 16 | | ANSI 150 | | ANSI 300 | | | | | А | В | С | [kg] | n | dxl | n | dxl | n | dxl | | 50 | 77 | 105 | 70 | 2.6 | 4 | ⁵ / ₈ " x 7" | 4 | ⁵ / ₈ " x 7" | 8 | ⁵ / ₈ " x 7" | | 80 | 94 | 136 | 84 | 4.1 | 8 | ⁵ / ₈ " x 8" | 4 | ⁵ / ₈ " x 8" | 8 | ³ / ₄ " × 8 ¹ / ₂ " | | 100 | 114 | 175 | 105 | 8.6 | - | - | 8 | 5/8" x 81/2" | 8 | ³ / ₄ " × 10" | | 150 | 140 | 222 | 129 | 17.3 | - | - | 8 | ³ / ₄ " × 10 | 12 | 3/ ₄ " × 11" | | 200 | 171 | 279 | 157 | 36.4 | - | - | 8 | ³ / ₄ " x 11 ¹ / ₂ " | 12 | $^{7}/_{8}$ " x $12^{3}/_{4}$ " | | 300 | 240 | 410 | 222 | 80.5 | - | - | 12 | ⁷ / ₈ " x 14 ³ / ₄ " | 16 | 1 ¹ / ₈ " x 16 ¹ / ₂ " | | Series 600 | | | | | | | |------------|-----|-----------|--------|------|----------|--| | DN | | Size [mm] | Weight | | ANSI 600 | | | | А | В | С | [kg] | n | dxl | | 50 | 87 | 111 | 73 | 3.5 | 8 | 5/ ₈ " × 8" | | 100 | 133 | 194 | 114 | 14.3 | 8 | ⁷ / ₈ " x 11 ¹ / ₂ " | | 150 | 175 | 267 | 151 | 33.4 | 12 | 1" × 14 ¹ / ₄ " | | 200 | 205 | 321 | 178 | 55.4 | 12 | 1 ¹ / ₈ " x 16 ¹ / ₂ " | n: Number of bolts, d: thread size (UNC), l: length of bolt | Material | | | | | |----------------|------------------------------|---|--|--| | AFV | Body | Carbon steel S355J2H with ZnNi corrosion protection | | | | | Cage | Stainless steel (1.4542) | | | | | Sleeve | NBR/HNBR | | | | AFV pilot loop | Body | Brass (CuZn40Pb2) | | | | | Cover | Brass (CuZn40Pb2) | | | | | Orifice | Brass (CuZn39Pb3) | | | | | Diaphragms/elastomeric parts | Reinforced NBR/NBR | | | | | Bearings | Steel (C35) with Zn corrosion protection | | | | | Manifold block | Steel (ST52) with ZnNi corrosion protection | | | | | Bearings manifold block | Brass (CuZn39Pb3)/ Stainless steel 1.4305 | | | #### Pilot Loop: Dimensions and weights Block Single pilot Load limit regulator/Pilot Z / ZSC 100 ZSC 100 ZSC 320-100 Z 138 / ZSC 100 Z 138 / ZSC 320-100 O Impulse Restrictor Ø **]** Block Pilot C Weight 140 ZSC 100 188 244 112 205 6 kg Inspirator 8.5 kg Z / ZSC 100 329 244 112 205 140 ZSC 320-100 188 329 112 205 140 8 kg Z138 / ZSC 320-100 329 329 112 205 140 12.1 kg ZSC 100 205 192 135 239 121 6 kg Restrictor Z / ZSC 100 348 222 135 239 121 8.5 kg ZSC 320-100 205 192 135 324 206 8 kg Z 138 / ZSC 320-100 348 222 135 324 206 12.1 kg | Pilot loop pressure ranges | | | | | | | | | | |----------------------------|-----------------------|-------------------|---------------------|-----------------|-----------------|-------------|--|--|--| | Inlet pressure range | Outlet pressure range | Minimal different | tial pressure [bar] | Pressure rating | Control | system | | | | | [bar] | [bar] | Restrictor | Inspirator | | Load limiter 1) | Pilot | | | | | 3 – 49 | 1 – 14 | 2 | 1 | ANSI 300 | - | ZSC 100 | | | | | 3 – 45 | 1 – 10 | 2 | 2 | ANSI 300 | Z | ZSC 100 | | | | | 11 – 49 | 7 – 14 | 6 | 6 | ANSI 300 | Z 138 | ZSC 100 | | | | | 16 – 50 | 14 – 41 | 2 | 1 | ANSI 300 | - | ZSC 320-100 | | | | | 20 – 50 | 14 – 41 | 6 | 6 | ANSI 300 | Z 138 | ZSC 320-100 | | | | | 9 – 80 | 3 – 10 | 4 | 4 | ANSI 600 | Z | ZSC 100 | | | | | 14 – 84 | 8 – 14 | 6 | 6 | ANSI 600 | Z 138 | ZSC 100 | | | | | 20 – 100 | 14 – 41 | 6 | 6 | ANSI 600 | Z 138 | ZSC 320-100 | | | | $^{^{1)}}$ Usually the Load limit regulator Z / Z 138 are only required for inlet pressure fluctuations of more than 3 bar #### Operation To open the regulator it is necessary to reduce the pressure at the back of the sleeve until it is below inlet pressure. The now higher inlet pressure acts on the full inlet surface of the sleeve causing it to expand, lifting the sleeve from the inlet/outlet cages to allow flow through the valve. Two control loops are available, which automatically create the sleeve control differ- ential proportionate to flow required. Both loops are provided with external or internal supply facility. #### Inspirator control #### Restrictor control As the operator opens, a flow and hence pressure drop is created across the restrictor. The pressure drop is transferred directly to the back of the axial sleeve. | Operating differential | Boosted 3:1 | 1:1 | |-------------------------|--|---| | Applications | General Transmission/distribution Minimal pressure differential Enhanced control | Special applications Fast response Minimal downstream volumes Variable control requirements | | Low restrictor setting | Slow to open
Slow to close | Quick to open
Slow to close | | High restrictor setting | Quick to open
Quick to close | Slow to open Quick to close | #### Installation basic examples. to the back of the approximately 3:1. axial sleeve by The axial flow valve can be used in a wide range of installation configurations. Shown here are some typical #### Pilot operators (detailed information can be found on the Z/ZSC data sheet) - Type Z and Z 138 load limit regulator used to maintain the inlet pressure for a control pilot - Type ZSC 100 and ZSC 320-100 pilot used for secondary pressure control - Type ZSC 150 and ZSC 320-150 pilot used for back pressure and relief service - Type Hanoreg pilot used for secondary pressure control low outlet pressure - Type 1203/1203EP pilot used for secondary pressure control low outlet pressure | Pressure ratings | | | |---------------------------|--|-----------------------| | Туре | Maximum allowable operating pressure MOP | Outlet pressure range | | Z and ZSC 100 | 100 bar | 70 mbar to 22.4 bar | | Z 138 and ZSC 320-100 | 100 bar | 10.3 bar to 41.4 bar | | Hanoreg 1) | 16 bar | 15 mbar to 1 bar | | 1203/1203EP ¹⁾ | 10 bar | 10 mbar to 250 mbar | ¹⁾ See separate data sheet #### Pressure spring ranges | Load limit regulator Z, pilot regulator ZSC 100 and relief pilot ZSC 150 | | | | | | | | |--|-------------|------------|--|--|--|--|--| | Spring range | Colour code | Order No. | | | | | | | 70 – 350 mbar | Green | 71411 P010 | | | | | | | 0.14 – 0.7 bar | Brown/blue | 71411 P043 | | | | | | | 0.2 – 2.1 bar | Yellow | 71411 P011 | | | | | | | 0.7 – 5.2 bar | Red | 71411 P012 | | | | | | | 1.7 – 10.4 bar | Blue | 71411 P014 | | | | | | | 6.9 – 15.5 bar | White | 71411 P009 | | | | | | | 13.8 – 22.4 bar | White/red | 71411 P046 | | | | | | | | | | | | | | | max. inlet pressure 100 bar | Spring range | Colour code | Order No. | |-----------------|-------------|------------| | 10.3 – 41.4 bar | - | 71421 P008 | max. inlet pressure 100 bar #### Sleeves | Sleeve operating differential and ratings | | | | | | | | | | | | |---|------|-------------|----------|-------------------|----------------------------|--------------|-------------------|----------|--|--|--| | AFV series | Туре | Colour code | | Differential p | oressure p _{diff} | | Temperature range | Material | | | | | | | | Minin | num ¹⁾ | Maximum | | | | | | | | | | | | | Operating conditions | | | | | | | | | | | Cracking | Full open | Continuous | Intermittent | | | | | | | ANSI300 | HB5L | orange | 0.1 bar | 0.35 bar | 2 bar | 3.5 bar | -35 °C to +60 °C | HNBR | | | | | ANSI300 | HB5 | blue | 0.25 bar | 1 bar | 8 bar | 12 bar | -35 °C to +60 °C | HNBR | | | | | ANSI300 | HB7 | blue | 1 bar | 2 bar | 35 bar | 50 bar | -27 °C to +60 °C | HNBR | | | | | ANSI600 | В7 | red | 2 bar | 4 bar | 70 bar | 100 bar | -30 °C to +60 °C | NBR | | | | ¹⁾ By using a Restrictor block #### Noise Accurate noise prediction estimates can be given for the axial flow valve with or without silencer on request. Or please use our sizing tool. Where necessary silencers can be provided in complete stations designed to meet required noise restrictions. | Capacity | | | | | | | | | | | |----------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Size | DN | 50R10 | 50R25 | 50R50 | 50 | 80 | 100 | 150 | 200 | 300 | | ANSI 300 | Cv | 6.5 | 15 | 30.7 | 66.5 | 135 | 231 | 325 | 560 | 1165 | | ANSI 300 | Xt | 0.700 | 0.700 | 0.643 | 0.590 | 0.490 | 0.480 | 0.495 | 0.450 | 0.565 | | ANSI 300 | KG | 215 | 495 | 975 | 2005 | 3800 | 6400 | 9200 | 15050 | 35000 | | ANSI 600 | Cv | - | - | - | 67.6 | - | 248 | 500 | 710 | - | | ANSI 600 | Xt | - | - | - | 0.590 | - | 0.590 | 0.511 | 0.550 | - | | ANSI 600 | KG | - | - | - | 2050 | - | 7600 | 14000 | 21100 | - | ## Sizing - Critical flow, $p2 \le 0.5 \cdot p1$ $$Q_n = p1 \cdot \frac{K_G}{2}$$; $K_G = \frac{2 \cdot Qn}{p1}$ - Sub critical flow, $p2 > 0.5 \cdot p1$: $$\begin{aligned} Q_n &= K_G \cdot \quad \sqrt{p2 \cdot \quad (p1-p2)} \,; \\ K_G &= \frac{Q_n}{\sqrt{p2 \cdot (p1-p2)}} \end{aligned}$$ ## Correction factor for other gases The capacities on the previous pages are given in m^3/h of natural gas 0.61 (Air =1). For other gases multiply the capacity by K. $$K = \sqrt{\frac{0.61}{d_{operating gas}}}$$ $Q_{n \text{ operating } gas} = Q_{n \text{ natural } gas} \cdot K$ Q_n = maximum flow rate in m³/h natural gas at 15°C and pb = 1.013bar p_b = local static atmospheric pressure in bar (absolute pressure) $p1 = p_u + p_b$ inlet pressure absolute (bar absolute) $p2 = p_d + p_b$ outlet pressure absolute (bar absolute) K_G = Flow coefficient in $\frac{m^3}{h \cdot bar}$ | | Standard density | Relative density (Air=1) | Conversion factor | | |-------------|--------------------|--------------------------|-------------------|--| | | ρ n (kg/m³) | d | K | | | Natural gas | 0.83 | 0.64 | 1.00 | | | Town gas | 0.56 | 0.43 | 1.22 | | | Methane | 0.72 | 0.56 | 1.07 | | | Propane | 2.00 | 1.55 | 0.64 | | | Air | 1.29 | 1.00 | 0.80 | | | Nitrogen | 1.25 | 0.97 | 0.81 | | | Hydrogen | 0.09 | 0.07 | 3.04 | | ## Example #### Given: 1. Step: Calculating the necessary flow coefficient K_G => critical flow $p1 \cdot 0.5 > p2$ $$K_G = \frac{2 \cdot Q_n}{p_1} = \frac{2 \cdot 50000}{23} = 4348$$ It is recommended to choose a valve size with a K_G coefficient 20% above the calculated value. 2. Step:Choosing the valve Chosen: Axial Flow Valve: DN 100 ANSI 300 $K_G = 6400$ 3. Step:Choosing the sleeve Differential pressure: minimum 20 bar, maximum 42 bar Chosen: HB7 ANSI 300 DN 100 4. Step:Choosing the pilot loop $p_{\scriptscriptstyle U}$ between 23 – 45 bar varying, p_d between 1.0 – 10 bar, Chosen: Load limit regulator Z, pilot ZSC 100 For a detailed sizing please ask for our sizing tool #### **Accessories** #### Flange separator The flange separator is used to jack the flanges apart and relieve pipe strain to facilitate removal and replacement. (Two required) | Flange separator | | | |------------------|----------------|-------------| | Order No. | AFV size | | | | ANSI300 | ANSI600 | | 73593G001 | DN 50, 80, 100 | DN 50 | | 73593G002 | DN 150, 200 | DN 100, 150 | | 73593G003 | DN 300 | DN 200 | ## Centring tube The Axial Flow Valve is a wafer design which simply bolts between flanges. To ensure exact centring of the valve for full capacity, centring tubes are easily fitted over the existing bolts (series 300 only). | Centring tubes ANSI 300 | | | |-------------------------|----------|--| | Order No. | AFV size | | | 73552P001 | DN50 | | | 73552P002 | DN80 | | | 73552P003 | DN100 | | | 73552P004 | DN150 | | | 73552P005 | DN200 | | | 73552P007 | DN300 | | ### Spare part set | Spare part sets | | | |-----------------|--|--| | Order No. | Spare part set | | | 73914 K010 | Spare set Z / ZSC | | | 73917 K001 | Spare set AFV
(O-rings less sleeve) | | | 73 020 166 | Spare set inspirator | | | 73 020 165 | Spare set restrictor | | Sleeves see separate data sheet ## Your contacts Germany Elster GmbH Steinern Str. 19 - 21 55252 Mainz-Kastel T +49 6134 605 0 F +49 6134 605 223 www.elster-instromet.com info@elster-instromet.com AFV EN02 A29.04.2013 Belgium Elster NV/SA Rijkmakerlaan 9 2910 Essen T +32 3 670 0700 F +32 3 667 6940 www.elster-instromet.com info@elster-instromet.com 73030223 #### Singapore Elster-Instromet Sdn. Bhd. (Singapore Branch) 29 Tai Seng Avenue #06-05A Natural Cool Lifestyle Hub Singapore 534119 T +65 6247 7728 F +65 6848 9003 sales@elster-instromet.com.sg Copyright 2013 Elster GmbH All rights reserved. Subject to change without prior notice